Description: It's Day 95 in MIT's 150 days of sesquicentennial celebration, and all thoughts turn to the evolution of computer science and MIT's pivotal role in that history. As

But the rock star of this symposium is actually IBM's Jeopardy"winning Watson, whose glowing blue countenance beams in all three talks.

Where is artificial intelligence headed? Winston is working on a "trinity of strong hypotheses" _ about story, perception, and social interaction _ and he promises to report on the success of this way forward at the MIT bicentennial celebration.

About the Speaker(s):

Outside of MIT, Zue has consulted for many multinational corporations, and he has served on many planning, advisory, and review committees for the US Department of Defense, the National Science Foundation, and the National Academy of Science and Engineering. In 1990, he became a Fellow of the Acoustical Society of America. In 1999, he received the DARPA Sustained Excellence Award. In 2002, he received the Speech Technology Magazine's inaugural Lifetime Achievement Award. In 2004, he was inducted into the National Academy of Engineering.

Host(s): Office of the President, MIT150 Inventional Wisdom

]]>

Description: It's not every day that Euclid appears in public with "Alice and Bob," but in a lecture spanning a few thousand years,

Rivest makes quick work of the period before mid" 20th century, but credits the ancient Greeks for prime number factorization -- essential to cryptography -- and elementary ciphers. In the 18th and 19th century, mathematicians delved into number theory and extended techniques of factoring. The twentieth century, with its two world wars and technological advances, established the significance of cryptography on and off the battlefield. Alan Turing's Enigma machine not only helped the allies win World War II, but catalyzed development of the first generation of computers. MIT professor Claude Shannon, who worked with Turing and other cryptanalysts, went on to father the field of information science, leading to the digital age.

In the 1970s came development of public data encryption methods. Academics prevailed against U.S. government efforts to conceal means for encrypting data. In 1977, Rivest's group at MIT, which included Adi Shamir and Len Adleman, came up with RSA, an elegant algorithm for public"key cryptography that "relies on the difficulty of factoring" primes and which is still widely used. The group was so confident of its encryption method that they offered $100 for breaking a cipher"text based on a 129"digit product of primes. Rivest thought it would take "40 quadrillion years" to solve the challenge. "It was a bad estimate," he admits.

In fact, a combination of new algorithms and brute computing power cracked the text in 1994 ("The Magic Words are Squeamish Ossifrage"). Technological and theoretical advances have made possible improved encryption methods, and ways of authenticating and securing data. Faster computers may someday "make factoring a million"digit number easy," says Rivest. Work is even progressing on a quantum computer (it can only factor the number 15 so far). But code"breaking is also increasingly sophisticated, Rivest warns, as the internet opens up vast new areas of data to cyber"attack.

Rivest sees cryptography blossoming into applications for anonymity, password"based keys, and crypto for smart cards. He has been looking into probabilistic micropayment systems, and techniques to enhance the security and transparency of voting. "Maybe large prime numbers have a role to play in our democracy down the road," he says.

About the Speaker(s):

Rivest, whose research interests include cryptography, computer and network security, voting systems, and algorithms, is a member of the National Academy of Engineering, the National Academy of Sciences, and is a Fellow of the Association for Computing Machinery, the International Association for Cryptographic Research, and the American Academy of Arts and Sciences. Among other honors, Rivest, with Adi Shamir and Len Adleman, has been awarded the 2000 IEEE Koji Kobayashi Computers and Communications Award and the Secure Computing Lifetime Achievement Award.

Rivest is an inventor of the RSA public"key cryptosystem. He has extensive experience in cryptographic design and cryptanalysis, and has published numerous papers in these areas. He has served as a Director of the International Association for Cryptologic Research, the organizing body for the Eurocrypt and Crypto conferences, and as a Director of the Financial Cryptography Association.

He received a B.A. in Mathematics from Yale University in 1969, and a Ph.D. in Computer Science from Stanford University in 1974.

Host(s): Office of the President, Office of the President

]]>