Massachusetts Institute of Technology
Sign in

Dynamic Walking 2010. Michael Goldfarb. Implicit Control of a Powered Knee and Ankle Prosthesis.

Lower limb prostheses have traditionally been passive devices that lack the ability to generate net power at the joints. This absence of net power generation impairs the ability of passive prosthesis to restore biomechanically healthy function to lower limb amputees. Recent advances in battery, motor, and microelectronics technologies have enabled the possibility of powered (i.e., active) lower limb prostheses. Instilling a lower limb prosthesis with power, however, changes greatly the nature and significance of the prosthesis control and interface problem (i.e., a passive prosthesis can fundamentally only react to the user's input, but a powered prosthesis can both act as well as react). This talk describes the development of a lower limb prosthesis with a powered knee and ankle joint, and describes the control methodology through which the prostheses interacts with the user. Results are presented that indicate the effectiveness of the prosthesis and control interface.

Comments (0)

It looks like no one has posted a comment yet. You can be the first!

You need to log in, in order to post comments.

Dynamic Walking 2010

Dynamic Walking 2010

Category: Education | Updated 7 years ago

August 03, 2010 10:20
All Rights Reserved (What is this?)
Additional Files

4060 times

More from Dynamic Walking 2010

Dynamic Walking 2010. Stefano Stramigioli. Port-Based Robotics and Variable Impedance Actuators

Dynamic Walking 2010. Stefano Stram...

Added 7 years ago | 00:28:58 | 4647 views

Dynamic Walking 2010. Andy Ruina. Cats, astronauts, trucks, bikes, arrows, and muscle-smarts: Stability, translation, and rotation

Dynamic Walking 2010. Andy Ruina. C...

Added 7 years ago | 00:49:47 | 5916 views

Dynamic Walking 2010. Russ Tedrake. Feedback Motion Planning via Sums-of-Squares Verification

Dynamic Walking 2010. Russ Tedrake....

Added 7 years ago | 00:46:46 | 7424 views

Dynamic Walking 2010. Robert Gregg. Control and Planning with Asymptotically Stable Gait Primitives: 3D Dynamic Walking to Locomotor Rehabilitation.

Dynamic Walking 2010. Robert Gregg....

Added 7 years ago | 00:33:35 | 6983 views

Dynamic Walking 2010. Dan Ferris. Developing a Brain-Controlled Robotic Lower-Limb Exoskeleton.

Dynamic Walking 2010. Dan Ferris. D...

Added 7 years ago | 00:50:43 | 6808 views

Dynamic Walking 2010. Monica Daley. Diversity of bipedal locomotion among birds: Insights into the interplay of morphology, economy and stability

Dynamic Walking 2010. Monica Daley....

Added 7 years ago | 00:22:57 | 5308 views