Massachusetts Institute of Technology
Sign in

Dynamic Walking 2010. Roland Siegwart. Exploitation of Natural Dynamics in Quadrupedal Locomotion

Our research aims at the creation of fast and efficient running motions of four legged robotic systems. We design our robots to explicitly enable and exploit natural dynamic effects (such as the oscillation on springy legs) in their mechanical structure and their actuation with the goal of eliminating undesired negative work, minimizing the required actuator power, and alleviating shocks. For the variety of sub-problems that arise in this context (reaching from the proper hardware design to the efficient excitation and stabilization of the desired motion), we will present two complementary approaches: Firstly, by employing the concept of operational space control, we are able to project the dynamics of simple conceptual models onto an actual robotic system. This is shown for an extended SLIP-model, but the same technique can be employed to other models for which we developed efficient gaits and control strategies. By considering the obtained torques as a function of joint positions, we can then specifically design elastic elements that passively support the actuators. Secondly, we implemented a limit cycle based, optimal control approach using a Fourier series to efficiently excite the dynamics of a given robot or model – a method that was employed to identify different bounding gaits for a conceptual quadruped model, and to drive the most recent prototype of our robotic leg.

Comments (0)

It looks like no one has posted a comment yet. You can be the first!

You need to log in, in order to post comments.

Dynamic Walking 2010

Dynamic Walking 2010

Category: Education | Updated 6 years ago

August 05, 2010 15:31
All Rights Reserved (What is this?)
Additional Files

4587 times

More from Dynamic Walking 2010

Dynamic Walking 2010. Waleed Farahat. Optimal Workloop Energetics of Muscle-Actuated Systems: An Impedance Matching View

Dynamic Walking 2010. Waleed Faraha...

Added 6 years ago | 00:41:49 | 4244 views

Dynamic Walking 2010. Richard Marsh. Coordinated action of muscle-tendon systems in the avian hindlimb during walking, running, and jumping

Dynamic Walking 2010. Richard Marsh...

Added 6 years ago | 00:39:45 | 6155 views

Dynamic Walking 2010. Dan Ferris. Developing a Brain-Controlled Robotic Lower-Limb Exoskeleton.

Dynamic Walking 2010. Dan Ferris. D...

Added 6 years ago | 00:50:43 | 6386 views

Dynamic Walking 2010. Shuuji Kajita. Development of Cybernetic Human HRP-4C - struggle to realize human walking

Dynamic Walking 2010. Shuuji Kajita...

Added 6 years ago | 00:47:15 | 5204 views

Dynamic Walking 2010. Tom Roberts. Fast, cheap and out of control: dynamic interactions of elastic structures and muscle motors

Dynamic Walking 2010. Tom Roberts. ...

Added 6 years ago | 00:44:10 | 3441 views

Dynamic Walking 2010. Aaron Ames. First steps toward closing the loop on walking: from human walking to hybrid systems to robotic walking and back

Dynamic Walking 2010. Aaron Ames. F...

Added 6 years ago | 00:48:59 | 5878 views